Faculty: Joseph Sorg2016-12-15T13:34:07+00:00
Joseph Sorg

Joseph Sorg

Assistant Professor

Fax: 979-845-2891
Email: jsorg@bio.tamu.edu

Curriculum Vitae
Sorg Lab Website

3258 TAMU
Biological Sciences Building East
Room 314C

Biological Sciences Building East
Room 316

Joined the Department in 2010

  • B.S., 2001, Purdue University, Biochemistry.
  • Ph.D., 2006, The University of Chicago, Microbiology.
  • Postdoctoral research: Tufts University School of Medicine. 

Research Description

My lab is focused on the mechanisms of spore germination and bile acid resistance in Clostridium difficileC. difficile is a Gram-positive, spore forming, anaerobe that causes infections in people who have undergone antibiotic regimens.  Previously, we had shown that certain bile acids promote C. difficile spore germination while others inhibit germination.  Bile acids are small molecules made by the liver that help the absorption of fat and cholesterol in the GI tract while also serving as a protective barrier against invading pathogens.  Because C. difficile spores use the ratios of bile acids as cues for germination, the actively growing bacteria must have adapted means to avoid their toxic properties.  We are currently focused on identifying these factors and the mechanisms by which C. difficile spores germinate.

  1. Bhattacharjee, D, Sorg, JA. Conservation of the "Outside-in" Germination Pathway in Paraclostridium bifermentans. Front Microbiol. 2018;9 :2487. doi: 10.3389/fmicb.2018.02487. PubMed PMID:30386321 PubMed Central PMC6199464.
  2. Zhu, D, Sorg, JA, Sun, X. Clostridioides difficile Biology: Sporulation, Germination, and Corresponding Therapies for C. difficile Infection. Front Cell Infect Microbiol. 2018;8 :29. doi: 10.3389/fcimb.2018.00029. PubMed PMID:29473021 PubMed Central PMC5809512.
  3. Shrestha, R, Sorg, JA. Hierarchical recognition of amino acid co-germinants during Clostridioides difficile spore germination. Anaerobe. 2018;49 :41-47. doi: 10.1016/j.anaerobe.2017.12.001. PubMed PMID:29221987 PubMed Central PMC5844826.
  4. McAllister, KN, Bouillaut, L, Kahn, JN, Self, WT, Sorg, JA. Using CRISPR-Cas9-mediated genome editing to generate C. difficile mutants defective in selenoproteins synthesis. Sci Rep. 2017;7 (1):14672. doi: 10.1038/s41598-017-15236-5. PubMed PMID:29116155 PubMed Central PMC5677094.
  5. Shrestha, R, Lockless, SW, Sorg, JA. A Clostridium difficile alanine racemase affects spore germination and accommodates serine as a substrate. J. Biol. Chem. 2017;292 (25):10735-10742. doi: 10.1074/jbc.M117.791749. PubMed PMID:28487371 PubMed Central PMC5481577.
  6. Girinathan, BP, Monot, M, Boyle, D, McAllister, KN, Sorg, JA, Dupuy, B et al.. Effect of tcdR Mutation on Sporulation in the Epidemic Clostridium difficile Strain R20291. mSphere. ;2 (1):. doi: 10.1128/mSphere.00383-16. PubMed PMID:28217744 PubMed Central PMC5311115.
  7. Francis, MB, Sorg, JA. Dipicolinic Acid Release by Germinating Clostridium difficile Spores Occurs through a Mechanosensing Mechanism. mSphere. ;1 (6):. doi: 10.1128/mSphere.00306-16. PubMed PMID:27981237 PubMed Central PMC5156672.
  8. Bhattacharjee, D, McAllister, KN, Sorg, JA. Germinants and Their Receptors in Clostridia. J. Bacteriol. 2016;198 (20):2767-75. doi: 10.1128/JB.00405-16. PubMed PMID:27432831 PubMed Central PMC5038010.
  9. Francis, MB, Sorg, JA. Detecting Cortex Fragments During Bacterial Spore Germination. J Vis Exp. 2016; (112):. doi: 10.3791/54146. PubMed PMID:27403726 PubMed Central PMC4970447.
  10. Bhattacharjee, D, Francis, MB, Ding, X, McAllister, KN, Shrestha, R, Sorg, JA et al.. Reexamining the Germination Phenotypes of Several Clostridium difficile Strains Suggests Another Role for the CspC Germinant Receptor. J. Bacteriol. 2015;198 (5):777-86. doi: 10.1128/JB.00908-15. PubMed PMID:26668265 PubMed Central PMC4810609.
Search PubMed