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Ecuador

Charles D. Criscione Texas A&M University, College Station, TX, USA

Christina Dold University of Oxford, Oxford, UK

Mona H. Fenstad Norwegian University of Science and Technology,
Trondheim, Norway

Camila A. Figuieredo Universidade Federal da Bahia, Salvador, Brazil

Albis Francesco Gabrielli World Health Organization, Geneva, Switzerland

Robin B. Gasser The University of Melbourne, Parkville, Victoria, Australia

Peter Geldhof Ghent University, Belgium

Andrew Hall University of Westminster, London, UK

Ross S. Hall The University of Melbourne, Parkville, Victoria, Australia

Celia V. Holland Trinity College, Dublin, Ireland
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INTRODUCTION

In many regards, the field of genetic epidemiology (a.k.a. molecular or
evolutionary epidemiology and here defined as the use of genetic/
molecular markers to infer some aspect of the parasite/pathogen’s

Ascaris: The Neglected Parasite

http://dx.doi.org/10.1016/B978-0-12-396978-1.00008-2 203 Copyright � 2013 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/B978-0-12-396978-1.00008-2


population biology such as transmission, population growth, or selected
traits) asks the same questions as asked in the field of conservation
genetics. Is there just one species or are there cryptic evolutionary units, is
the species fragmented into subpopulations, was the fragmentation the
result of human perturbation, is the population declining, what facilitates
connectivity/gene flow among subpopulations, what was the source of
invasion (outbreak) for an exotic species (emerging pathogen), what loci
are of adaptive significance? The key difference between epidemiology
and conservation is the end goal. Epidemiologists try to eliminate or
reduce populations of parasites/pathogens. In contrast, conservationists
strive to maintain or increase population sizes and continuity of endan-
gered species. Population genetic applications are now integral in con-
servation because it is well recognized that low genetic diversity, small
effective population sizes, and population fragmentation (all three of
which can be measured via genetic methods) can increase the chance of
population extinction.1,2 Because conservation geneticists are interested in
these factors to prevent extinction, then it seems logical that epidemiol-
ogists could use similar data to help reduce or eradicate parasites/path-
ogens. Indeed, because of the parallel questions between the fields, much
of the population genetics theory, methods, and reasoning that are used in
conservation genetics could be applied to genetic epidemiology. For
instance, it is recognized that low genetic diversity can reduce evolu-
tionary potential (i.e. the ability of populations to evolve to cope with
environmental change).1,3 Chemotherapy control programs are a major
environmental change for parasites. Given that drug resistance has
evolved among several helminths,4,5 it seems reasonable that reducing
genetic diversity, via a reduction in effective population size (discussed
below), should be an imperative epidemiological goal to help prevent
drug-resistant evolution.

In this chapter, I discuss three pertinent applications of population
genetics (all of which have been utilized in conservation biology) to
further our understanding of Ascaris epidemiology in fine scale
geographic studies. First, I focus on whether sympatric populations of
Ascaris in humans and pigs constitute separate populations in order to
ascertain if there is cross-transmission between human and pig hosts.
Second, I discuss the use of landscape genetics to identify foci of trans-
mission and epidemiologically relevant variables correlated to substruc-
ture of parasite populations. These first two topics correspond to a series
of recently proposed hierarchical questions aimed at addressing local
scale population genetics in metazoan parasites.6 Thus, I refer readers
to Gorton and colleagues6 for a more general discussion of these topics
in metazoan parasites. Also, these sections are not intended to be
a comprehensive summary of the Ascaris population genetics literature
as this was recently reviewed by Peng and Criscione.7 The third section
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of this chapter proposes the novel integration of the effective population
size (Ne) parameter into population monitoring and epidemiological
studies of parasites. Using microsatellite data from a metapopulation of
A. lumbricoides in Nepal, I demonstrate the utility of estimating Ne with
single-sample, contemporary estimators. I also discuss assumptions and
provide some guidelines for estimating Ne. My goal is to emphasize the
importance of the above topics in epidemiological research, highlight the
population genetic methodologies that have been used, and point to new
directions that may aid the development or monitoring of Ascaris (and
metazoan parasites in general) control programs.

A species’ life history and the way samples are collected can influence
interpretation of some of the genetic analyses I discuss. Thus, I first
provide a brief summary of the biological characteristics of Ascaris.
Sampling will be addressed in the context of each study that is discussed
below and just note here that genotypes were always obtained from adult
worms. Ascaris has a direct life-cycle where mature male and female
adult worms reside in the lumen of the small intestine.8 The mating
system has not been extensively studied. However, recent paternity
analyses indicate there is polyandry in pig Ascaris9 and HardyeWeinberg
equilibrium, indicating random mating, has been observed on very local
scales (i.e. within people in a single village).10 A female can produce
millions of eggs over her lifetime, which is about 1 year.11 Eggs are
released into the external environment where they can persist for 6 to 9
years.12 Infection occurs by ingestion of eggs via fecal contaminated
material. Larvae hatch in the small intestine, penetrate the intestinal wall,
migrate to the lung to become fourth-stage larvae, and then migrate up
the trachea back into the esophagus and ultimately the small intestine. In
about 60 days from the point of infection, females will start to produce
eggs.8 Key life history aspects in terms of population genetics are that
breeding worms are transiently separated into groups (i.e. hosts)13 and
that the long-lived eggs can lead to overlapping generations. As will be
discussed, the latter is of significance because breeding worms that end
up in the same host may be of different offspring cohorts (i.e. there is
overlapping of generations).

ASCARIS CROSS-TRANSMISSION BETWEEN
HUMANS AND PIGS

The subject of whetherAscaris in humans and pigs is one or two species
(A. lumbricoides and A. suum, respectively) is still being discussed7,14,15

and really points to an underlying question that is central for many
human parasites: are there reservoir hosts (i.e. is there zoonotic trans-
mission)? The answer to this question would clearly impact control
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strategies in terms of which hosts should be targeted: just humans or both
humans and pigs? It is clear from mitochondrial sequence (mtDNA) data
that there is strong neutral genetic differentiation between roundworms
originating from sympatric host species.16e18 These data indicate there is
non-random transmission between the host species such that there is not
a single source pool of infection shared by humans and pigs. However,
because there were no fixed allelic genetic differences between human
and pig Ascaris samples, these results were unable to ascertain if there
were two completely independent transmission cycles (one through
humans and one through pigs) or if there was limited cross-infection
between the two host species. The lack of fixed sequence differences
could result from incomplete lineage sorting (retention of ancestral line-
ages in descendent taxa) with no cross-transmission, current introgression
(hybrid offspring resulting from cross-breeding between human and pig
Ascaris), or cross-transmission, but no interbreeding (e.g. a worm is a first
generation migrant from one host species to the other).7 In areas of non-
endemic human transmission (USA, Denmark, and Japan), worms
obtained from humans had DNA sequences that matched those obtained
from pigs.19e21 These data clearly show cross-transmission from a pig
source into humans and raise the possibility that the lack of fixed differ-
ences observed in humanepig endemic areas is also due to cross-
transmission. Thus, two important questions are raised: (1) how can
one detect cross-transmission in humanepig endemic sites, and (2) if
there is cross-transmission, is there introgression between human and
pig Ascaris?

Criscione and colleagues22 addressed these questions with genetic-
based assignment/model-based clustering methods.23,24 These methods,
which have a history in species management applications, use informa-
tion from multilocus genotypes (commonly assuming HardyeWeinberg
equilibrium and linkage equilibrium among loci) to ascertain population
membership of individuals.25 They can also be used for identifying first
generation migrants and hybrid individuals. Genetic assignment/model-
based clustering methods provide several advantages for allowing one to
detect hybrids. First, analyses can be conducted when no taxa-specific
markers exist,26,27 as is currently the case with Ascaris of humans and
pigs.7 Second, separate samples where each only contains individuals of
a single parental population are not required.26 Third, a priori delineation
of populations is not necessary (i.e. no knowledge of underlying
substructure is needed for the analyses). The latter is important as the
finding of cryptic species and substructure is not uncommon among
metazoan parasites.6

From both a village in Guatemala and a county in the Hainan Province
of China, Bayesian clustering methods with genotypes of adult worms
clearly delineated genetically structured parasite populations between
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human and pig hosts in sympatry.22 These results were in accordance
with previous mtDNA-based studies.16e18 Moreover, the multilocus
genotype data enabled the identification of hybrid worms (4% in
Guatemala and 7% in China).22 The finding of hybrids necessarily implies
that there was cross-transmission between human and pig hosts because
a worm of pig origin and of human origin had to meet in the same host in
order to mate. This cross-transmission and interbreeding had to be recent
as the methods employed can only detect hybrids going back two
generations.26 Zhou and colleagues28 used the same methods to ascertain
the frequency of cross-transmission across six provinces in China. They
observed similar results and identified both first generation migrants
(~7% of sampled worms) and hybrid worms (also ~7%), both of which
were predominantly collected from human hosts. Notably, the authors
state “The results strongly suggest pig Ascaris as an important source of
human ascariasis in endemic area where both human and pig Ascaris
exist. In consideration of current control measures for human ascariasis
targeting only infected people, it is urgently needed to revise current
control measures by adding a simultaneous treatment to infected pigs in
the sympatric endemics”.28With these newmolecular tools at hand, it will
be prudent to perform additional studies from sympatric populations to
determine if limited cross-transmission is a global theme especially in
relation to different pig-raising, cultural, or economic conditions. It will
also be of interest to see if cross-transmission continues to show a largely
pig to human pattern and to explore the mechanisms that generate the
genetic differentiation between the host-associated populations despite
the high frequencies of cross transmission.7

Aside from the direct inference of cross-transmission, what is the
epidemiological significance of limited cross-transmission and intro-
gression? Criscione and colleagues22 highlight two critical aspects. First,
while there is significant genetic differentiation between Ascaris pop-
ulations in humans and pigs, the long-term ability to cross-transmit
between host species remains possible. Thus, even in non-endemic
sites, human infection via a pig source remains possible (as evidenced
by several studies19e21). Also, this ability may have led to a complex
evolutionary history of multiple host colonization events.7 Second,
hybridization can lead to introgression of adaptive genes29 and
hybridization itself may produce new combinations of parasite geno-
types that increase parasite virulence or host range via host immune
evasion.30 Little attention has been given to these aspects of Ascaris
epidemiology. Because parasite hybridization is of long-term epidemi-
ological significance in terms of the evolution of novel host infectivity
genes or drug-resistant genes, it will be critical to begin mapping regions
of genomic introgression in relation to host species infectivity patterns
in Ascaris.
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LANDSCAPE GENETICS AS A MEANS TO
INFER ASCARIS TRANSMISSION WITHIN

A HOST POPULATION

Effective Ascaris control will require detailed knowledge of parasite
dispersal to fully evaluate transmission patterns among individual
human hosts. The extent of parasite dispersal, however, is difficult to
ascertain with data based solely on infection intensities (i.e. number of
worms per infected host or a surrogate such as eggs per gram of feces).
This is because direct observation of parasite offspring leaving one host
and subsequently infecting the same or a new host is nearly impossible.31

Thus, while intensity data are necessary to explore factors that explain the
variation in the distribution of parasites among individual hosts,32 they
do little to answer the question of where did an individual acquire their
infection (i.e. are there different foci of infection in the single human
population).

Identification of population subdivision via population genetics anal-
yses of multilocus genotypic data provides a powerful means to infer
macroparasite dispersal among subdivided units such as individuals or
groups of hosts (e.g. households).33e36 When using genetic data to infer
transmission among individual hosts, the sampling unit should be the
parasite stage that infects that host.6 In the case of Ascaris, adult worms
would be genotyped from human hosts. If, for example, expelled Ascaris
eggs from humans were used, then measures of genetic differentiation
could be inflated due to the possible sampling of sibling parasites. I refer
readers to Steinauer and colleagues37 for a more thorough discussion of
this type of sampling. Additional insight into what controls the trans-
mission process can be gained by using landscape genetic statistical
approaches to test if epidemiological variables correlate with the observed
parasite genetic structure. Landscape genetics is a multidisciplinary field
that incorporates spatial statistics, landscape ecology, and population
genetics to evaluate the role of landscape variables (e.g. altitude, ground
cover) in shaping genetic differentiation among populations.38 In this
regard, landscape genetics has parallel goals with the field of spatial
epidemiology, which examines the correlates of spatial variation in
infection intensity patterns.39 As landscape genetics is still a developing
field where several methodologies are being explored, I refer readers to
a special issue in Molecular Ecology that highlights this field in more
detail.40 Here, I demonstrate the application of landscape genetics to the
epidemiology of A. lumbricoides from an endemic population in Jiri,
Nepal.41

The goals of the study by Criscione and colleagues41 were to deter-
mine if there was more than one source pool of infection (i.e. foci of
infection) and, if so, to examine epidemiological variables that may
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correlate with these foci. If there is high mixing and dispersal of
parasites across the human population, then the parasites would have
a panmictic population structure. Thus, people would effectively be
acquiring infections from a common parasite population (i.e. a single
source pool of infection). In contrast, repeated transmission that is
localized at particular foci across the human population would limit
parasite mixing, leading to parasite genetic differentiation within
a single human population. The finding of multiple genetic clusters of
parasites, therefore, is an indication that there could be multiple
infection foci (see Figure 1 in Criscione and colleagues41). Adult A.
lumbricoides were collected from 320 people across 165 households that
spanned an area approximately 14 km2. In addition to spatial sampling,
two temporal samples (~3 years apart, so a total of 211 household-by-
year samples) were taken for some regions of the village. For logistic
reasons, temporal sampling was staggered for three regions of Jiri such
that one group of houses was sampled in 1998 and 2001, a second group
in 1999 and 2002, and a third in 2000 and 2003. As noted below, time of
collection explained less than 1% of the variance in the genetic structure
of the parasite population.41 A total of 1094 roundworms were geno-
typed at 23 autosomal microsatellite markers.10 Model-based Bayesian
clustering (implemented in the program STRUCTURE

23) was used to
analyze the multilocus parasite genotypes to determine if there was
underlying genetic structure among the sampled worms. Importantly,
no prior spatial or temporal information was included (or needed) in
this analysis.

There was strong support for local-scale genetic structuring with 13
genetic clusters of parasites identified. The results of the population
clustering analyses were subsequently incorporated into a non-
parametric multivariate analysis of variance42,43 to elucidate spatial,
geographical, or epidemiological features associated with the partitioning
of genetic variation among the sampled worms. This analysis provided
a novel approach to integrating individual-based genetic assignment
results with downstream statistical analyses.41 The independent variables
included a nested design (household and hosts nested within household)
and eight covariates: host age, host sex, host density (number of people
living in the house), elevation, geographic distance among households
(latitudeelongitude combined), infection intensity, parasite sex, and time
of collection. When variables were analyzed independently, household
explained >63% of the variance in genetic structuring whereas each
covariate always accounted for <15%. When the nested design was
conditioned on the eight covariates (i.e. variance due to the covariates was
accounted for first), the contribution of household was still high and
explained >36%. In contrast, none of the eight covariates were significant
after accounting for the nested design. Interestingly, time had no impact
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on the underlying genetic structure even when compared pairwise
between time periods for 18 households with sufficient sample sizes for
testing.41 Furthermore, a spatial autocorrelation analysis showed that
parasites between households within 540mwere more genetically similar
than expected by chance alone. Genetic differentiation measured as FCT
(hierarchical F-statistic of household to the total) was 0.023 and highly
significant (p< 0.0001)41.

These results41 revealed three key insights into transmission of A.
lumbricoides in Jiri: there were separate foci of transmission at this local
scale, households and nearby houses shared genetically related para-
sites, and people reacquired their worms from the same source pool of
infection over time. These results challenge the dogma that a single
human community will correspond to a homogeneous parasite pop-
ulation (implicit in many classic models44,45 of parasite transmission
that measure a single basic reproduction number, R0). In Jiri, multiple
source pools of infection need to be considered when modeling para-
site transmission. Thus, when using models to evaluate control strate-
gies in Jiri, it would be more appropriate to consider incorporating
parasite populations that exist in an interconnected network, i.e.
metapopulation.46

Although I emphasized how population genetics can be used to
elucidate transmission patterns, I note that I do not view landscape
genetics as a panacea for epidemiological goals in general, nor do I view
genetics data as a replacement for infection intensity data. Rather I see the
two types of data as providing different, but complementary, information
about the transmission process. For example, Walker and colleagues32

found that in Bangladesh host age and sex explained part of the variation
in worm burdens. In contrast, host age and sex were not correlated to how
worm genetic variation was partitioned in Jiri, Nepal.41 I realize that data
from the two studies are not directly comparable as they were from
different locations, but the point is that both parasite intensity and genetic
data are needed to fully elucidate the transmission process. Thus, in this
hypothetical comparison, although gender may account for differences in
worm burdens within a household (females have higher intensities
possibly due to peridomiciliary behaviors that increase exposure32), males
and females are still getting their worms from the same source of infec-
tion. Lastly, it should be noted that the patterns in Jiri may not extrapolate
to other locations as differences in human behavior, topography, and
external environmental conditions could alter transmission patterns. For
instance, a communal use of human feces for fertilizer may facilitate
parasite dispersal thereby creating a single source pool of parasites. Thus,
the assumption of a single infectious pool of parasites will need to be
tested for each population of interest and as evidenced by the study in
Jiri,41 even on very local scales.
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EFFECTIVE POPULATION SIZE: EPIDEMIOLOGICAL
UTILITY AND ESTIMATION

The effective population size (Ne) is the size of an ideal population that
has the same rate of genetic drift as the population under consideration.
The “ideal” population follows the models of Wright47 and Fisher48 and,
in simple terms, refers to the situation where every individual has an
equal opportunity to contribute genes to the next generation.49,50 The
effects of genetic drift can be measured several ways such as by the
increase in inbreeding, increase in variance in allele frequency, or loss of
heterozygosity over generations. Hence, there are different definitions of
Ne: inbreedingNe, varianceNe, and eigenvalueNe, respectively.

51 In closed
populations of constant size, the different concepts have similar or
identical values of Ne, but certain demographic scenarios can lead to
different estimates of Ne depending on which aspect of drift is being
measured.49e52 My discussion will largely not make a distinction between
the different Ne concepts; however, the estimates I provide are more
closely related to inbreeding Ne. Commonly, but not always, Ne is smaller
than the actual census population size (Nc) because some parents
contribute many more offspring to the next generation than others.

Of what interest is parasite Ne to epidemiologists? There are both long-
term (evolutionary) and short-term (ecological) utilities of Ne. Evolu-
tionary importance stems from the fact that Ne directly determines the
rate of drift where the loss of neutral genetic variation (often quantified
via expected heterozygosity;He) each generation is expected to decline by
a rate inversely dependent on Ne.

51 Ne is also needed to assess the relative
importance of the three other evolutionary mechanisms (mutation, gene
flow, and selection). For instance, equilibrium gene diversity in the
infinite alleles model is determined by Ne and the mutation rate (u)
such that

He ¼ q

qþ 1
; (8.1)

where q¼ 4Neu.
51 Additionally, if Nes<< 1 (s¼ selection coefficient),

change in allelic frequency is determined primarily by genetic drift rather
than selection.47 Given these above relationships, it is clear why Ne is
an important parameter in conservation biology.53 Indeed, conserva-
tionists are concerned about populations with small Ne because there is
lower genetic variation to respond to environmental change (i.e. lower
adaptive potential), the breeding of closely related individuals can reduce
the fitness of an outbreeding species (inbreeding depression), and
deleterious alleles can become fixed at low Ne.

1e3 All of the latter may
increase the chance for population extinction.1 Of course, the latter is the
goal for epidemiologists. Consequently, from a disease management
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perspective, reducing parasite Ne has the long-term goal of helping to
reduce parasite adaptive potential. Because drift affects loci across the
genome, reducing parasite Ne may help reduce standing genetic variation
at any given locus that could become of adaptive significance in the face of
drastic environmental changes (e.g. application of drugs or vaccines).
Moreover, the parameter Ne itself is necessary to help model the potential
for drug resistance evolution in relation to the selective pressures induced
by chemotherapy programs.

In ecological (epidemiological) terms, Ne is important as it is directly
determined by life history variation. Demographic factors such as fluc-
tuating population size, non-binomial variation in reproductive success
and unequal sex ratios can cause Ne to deviate (likely lower) from Nc.

51

Thus, knowledge of what demographic factors impact parasite Ne might
begin to help link the microevolutionary dynamics of parasites to trans-
mission models that examine the reproductive potential and population
growth of parasites.54 Admittedly, measuring demographic variables can
be difficult in parasites. Thus, I believe that more immediate applications
of using Ne in epidemiological studies will stem from recent develop-
ments of single-sample, contemporary genetic estimators of Ne. In
particular, the linkage disequilibrium (LD-Ne)

55,56 and sibship assignment
(SA-Ne)

57 methods hold great promise to estimate Ne in parasite pop-
ulations. Because these methods require only the genotyping of a sample
of parasites from a single time point, they will be useful in generating
estimates of Ne for the long-term applications noted above. Moreover, for
short-term applications, recent simulations have shown that LD-Ne esti-
mates from two time points can be used to detect population bottlenecks58

or fragmentation of a population.59 Therefore, what I envision for short-
term applications is the use of Ne estimates as a genetic means to
monitor parasite control programs. For instance, one can ask if a chemo-
therapy program not only reduces worm burdens (Nc), but also Ne. Does
a control program reduce parasite dispersal across the treated population
(i.e. cause population fragmentation)?

I am unaware of any study that has provided contemporary estimates
of Ne in a metazoan parasite of animals much less the application of Ne

estimates to monitoring a macroparasite control program. Genetic
monitoring studies of parasites largely focus on levels of allelic rich-
ness (A) or He.

60 While it is important to report the latter two statistics,
there are disadvantages to these indices of genetic diversity. First, A is
subject to sample size unless rarefaction (i.e. subsampling larger samples
to compare richness values among samples with different sample sizes) is
used. Second, bothA andHe (or the DNA sequence data equivalent, p) are
affected by mutation rate. This means these two measures provide
somewhat redundant information, as A increases so does He (e.g. with
two equally frequent alleles He¼ 0.5, with four He¼ 0.75). Being affected
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by mutation also means comparisons across studies that use different loci
may be inhibited as different loci (e.g. SNPs vs. microsatellites) may have
different mutation rates. In contrast, changes in Ne will be comparable
across studies and species. Third, while A and He may provide an indi-
cation of immediate evolutionary potential, they have no predictive value
for future levels of genetic diversity.61 As noted above, Ne is a critical
parameter in many evolutionary models including future He. Below I
provide an example of how contemporary Ne estimates can be used to
further elucidate the epidemiology and population dynamics of human
parasites.

The Ne estimates in Table 8.1 were generated with genotype data from
A. lumbricoides in Jiri (same data set as described for the landscape
genetics study41). I note that the study by Criscione and colleagues41 was
not designed to address specific questions about Ne or the effects of
chemotherapy on parasite population dynamics. Worms were originally
collected to examine how human genetics may play a role in parasite
infection intensities.62e64 Thus, sampling is less than ideal for some of the
questions I address below. Furthermore, I am assuredly violating certain
assumptions for some of the population genetic theoretical models that I
utilize below. I try to highlight where some of these assumptions may be
violated. However, I encourage readers to research the references for the
models as space limitations prevent an in-depth discussion of all
assumptions. My main goal in going through several models is to show
epidemiologically related questions one could ask with Ne and to high-
light some sampling issues associated with estimating Ne. Nonetheless,
despite the assumptions I make, I believe the presented data do provide
a reasonable approximation for some important population dynamics of
Ascaris in Jiri.

I am primarily interested in estimating the parasiteNe from households
(i.e. subpopulations of the Ascaris metapopulation in Jiri). As discussed
previously, there was significant parasite genetic structure across Jiri that
was largely explained by households (>63%).41 As there was focal
transmission around households, this would be the scale by which one
would monitor the impact of a control program on parasite population
dynamics. Also, because of the genetic subdivision, the Ne of subpopu-
lations will be of relevance in relation to adaptive potential (i.e. this is the
level by which one would monitor genetic diversity or model the relative
influence of genetic drift versus selection). In my data set, household Ne

was estimated from a sample of adult Ascaris that were collected from
individual people of a household after chemotherapy treatment.41 A
critical aspect to consider is what effective size is being estimated from
this collected sample. This is outlined in Figure 8.1. Because Ascaris has
long-lived egg stages in the external environment,12 the effective number
of adults breeding in year t (Nt) will have a proportion of their offspring
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TABLE 8.1 Estimates of household-by-yearNe based on the linkage disequilibrium55,56 (LD) or sibship assignment57 (SA) methods with their
lower and upper 95% confidence intervals

House ID_yeara
Genotyped

wormsb
House

intensityc
Allele

freq. cutoffd LD-Ne

LD

95% lower

LD

95% upper SA-Ne

SA

95% lower

SA 95%

upper

014_1999 11 19 0.05 18.1 12.9 27.7f 110 37 infinite

014_2002 13 13 0.04 21.4 15.6 31.6 52 24 447

076_1999 10 29 0.06 20.5 13.9 34.5 f 180 57 infinite

077_2000 10 12 0.06 104 34.5 infinite 180 53 infinite

080_2000 12 18 0.05 �303.3e 89.3 infinite 2.15 � 109 e 1 infinite

092_2000 11 13 0.05 24.3 14.8 52.7 44 20 635

097_2000 22 32 0.03 42.5 34.1 55.3 116 59 444

097_2003 37 43 0.02 66.7 54.8 83.9 133 79 272

119_2002 27 28 0.02 41.3 34.3 51 117 67 321

121_1999 29 89 0.02 90.1 67.4 132.3 180 100 862

121_2002 13 15 0.04 53.3 30.2 171.8 f 104 48 infinite

122_1999 82 173 0.02 314.8 211.5 582.6 251 183 363

122_2002 42 48 0.02 271.8 178.3 546.6 265 164 680

123_1999 33 115 0.02 59.2 48.8 74.1 92 58 170
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123_2002 21 31 0.03 146.7 78.5 785.3 f 420 131 infinite

124_1999 11 34 0.05 447.7 43.4 infinite 2.15 � 109 e 1 infinite

128_1999 13 24 0.04 28 19.7 45.2 f 156 64 infinite

133_2002 15 20 0.04 34.7 25.5 51.9 f 210 83 infinite

134_1999 14 32 0.04 54.8 32.6 142.7 f 364 95 infinite

135_1999 65 132 0.02 240 178.1 359.2 208 147 310

135_2002 72 85 0.02 184.5 147.4 242.7 173 125 246

140_1998 23 31 0.03 40.7 31.9 54.6 67 36 195

140_2002 14 20 0.04 183.2 57.6 infinite 364 113 infinite

148_1998 13 23 0.04 �1590.5e 78.9 infinite 312 101 infinite

148_2002 22 24 0.03 89.1 57.2 185.3 185 89 12,788

152_1998 12 22 0.05 37.9 22.6 94.5 f 132 47 infinite

aHousehold identification numbers correspond to those in Figure 2 of Criscione and colleagues.41

bThe number of worms that were genotyped at 23 microsatellite markers per household-by-year. Raw data are from Criscione and colleagues.41

cThe total number of worms collected per household-by-year after albendazole treatment. See Criscione and colleagues41 for details of sampling.
dAlleles with frequencies below this value were omitted when estimating Ne with the LD method.56

eNegative or 2.15� 109 estimates of Ne are regarded as infinite (see text for explanation).56

fThe LD-Nemethod had an upper bound for the 95% CI for the given allele frequency cutoff, but at other cutoffs, estimates typically included infinity as the upper bound. In contrast, LD-Ne

estimates in shaded rows often provided bounded CI even at other allele frequency cutoffs.

The jackknife method was used for the LD interval55 and the SA interval is estimated in the program.67 Estimates were generated with the programs LDNE
66 and COLONY,67

respectively. The 13 shaded rows highlight where both estimators yielded Ne estimates bounded by confidence intervals.
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FIGURE 8.1 Diagram showing how the life history of Ascaris and sampling relate to

the estimation of effective size parameters. (A) Illustration of how the long-lived egg stage
leads to overlapping generations in a single subpopulation (e.g. a household in the current
study41). Boxes represent the effective number of adults breeding in year t (Nt). Five
breeding years are shown and an arbitrary year is chosen as year t¼ 0. Generation length (T;
average age to adulthood) is not known for Ascaris. For demonstration, T¼ 2 is shown. As
an example, 25% of the offspring from N0 (L0) will become adults in year 1, 50% in year 2,
and 25% in year 3 (dashed curved arrows). In a given breeding year, adult worms will be of
mixed ages (i.e. they originate from different temporal breeding cohorts). For instance, N4

will be a mixture of 25% offspring from year 1 (L1), 50% L2, and 25% L3 (solid curved
arrows). The use of a single-sample, genetic estimator (e.g. LD-Ne or SA-Ne) on a random
sample of adult worms across hosts within a subpopulation (dotted oval) provides an
estimate of the generational Ne

56 (see text). Generational Ne is zTÑt, where Ñt is the
harmonic mean of the Nt’s within a generation.65 (B) Illustration of how breeders within
a given year (figure is shown for N4) are subdivided among individual hosts. As noted
above, adult worms will be of mixed ages (e.g. A1, A2, A3). Eggs passed from each host are
the offspring of year 4 breeders (L4). The use of a single-sample, genetic estimator on
a random sample of eggs from single host (dotted oval) such as might be obtained from
a fecal sample provides an estimate of the effective number of breeders in that host (Nbi;
dotted arrow). The equation to calculate Nt is shown on the right and is a function of the
Nbi’s and the Xi’s, where Xi is the proportional contribution of progeny from the ith host to
the mixed pool that makes up the next generation of parasite breeders. Note that if the
species had discrete generations, Nt is Ne. See Criscione and Blouin13 for more thorough
discussion of using a model of subdivided breeders to estimate parasite Ne.
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that survive to reproduce in years tþ 1, tþ 2, and so on (Figure 8.1A).
These proportions determine the average age to adulthood (i.e. genera-
tion length, T).65 Thus, even though Ascaris adults may live only a year in
their host,11 generation length is likely several years longer due to the fact
that eggs can persist 6e9 years in the environment.12 Interestingly, Ascaris
life history closely approximates that of semelparous, age-structured
species such as annual plants with seed banks and Pacific salmon. A
detailed theoretical treatment of estimating Ne in the latter groups of
organisms is given by Waples.65 In short, generational Ne iszTÑt,, where
T is generation time in years and Ñt is the harmonic mean of the Nt’s
within a generation.65 An important point to recognize is that a sample of
adult worms of a given breeding year will contain individuals of mixed
ages, i.e. there are overlapping generations (Figure 8.1A). With the LD-Ne

and SA-Ne methods, the estimated Ne reflects that of the breeders that
produced the sampled adult worms (i.e. the parents of the sampled
worms) and not the sampled worms themselves (i.e. not Nt). While
cautioning that testing is needed, Waples and Do56 conjectured that
a mixed-aged sample that includes a number of consecutive age classes
approximately equal to generation length should produce an estimate
roughly corresponding to generationalNe. Thus, throughout the chapter, I
will assume that the sample of adult worms from each household
provides an estimate of generational Ne of each subpopulation
(Figure 8.1A). I will return to the estimation of Nt (Figure 8.1B) in my
concluding remarks.

I used two single-sample, contemporary estimators, LD-Ne and
SA-Ne,

55e57 as implemented in the programs LDNE
66 and COLONY v2.0.2.167,

respectively. Both of these methods provide estimates that are related to
the inbreeding Ne.

56,57 The LD-Ne method can be sensitive to rare alleles,
thus I followed the recommendations of Waples and Do56 for using alleles
with frequencies above a cutoff given the sample size (see Table 8.1). The
random mating system option was used. In COLONY, I selected the male
and female polygamy options without inbreeding. These latter options in
the two programs seem reasonable given the current state of knowledge
about Ascaris mating systems.9,10 Length of run and likelihood precision
(full-likelihood) were set to medium in COLONY. I used the update allele
frequency option and the complexity prior, which should result in
a higher Ne estimate (compared to not using it) as this prior discourages
complex pedigree inference.

Table 8.1 provides the estimates of Ne per household-by-year where 10
or more worms were genotyped (n¼ 26). There are several important
patterns and questions that emerge from these data. First, sample size
matters in obtaining estimates that are not infinite or do not have an upper
confidence interval of infinity. Infinity estimates (negative values in the
LD-Ne method or the 2.15� 109 values in the SA- Ne method) result when
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sampling error swamps the genetic signature of genetic drift in the case of
LD-Ne estimates56 or when little to no pedigree structure is found in the
SA-Ne method. Of the 26 estimates, only 13 (Table 8.1, shaded rows) gave
values that had bounded confidence intervals for both estimators. When
looking at the other 13 estimates, it appears that several of the LD-Ne

estimates had upper confidence limits when the SA-Ne method did not.
However, it is important to note that these LD-Ne estimates (white rows
and marked in Table 8.1) were sensitive for the allele frequency cutoff
such that other cutoff values returned an infinity upper bound (data not
shown). In contrast, LD-Ne estimates in the shaded rows had upper bound
confidence intervals regardless of allele frequency cutoff. Thus, there was
congruence between the two methods in returning estimates with
uncertainty in the upper confidence limits for the same household-by-
year samples. Thirteen of the 13 estimates with uncertainty in the upper
confidence limits (white rows) had n� 21, whereas 11 of the 13 estimates
with bounded confidence intervals had an n> 21 (Table 8.1). Small
sample sizes will only provide bounded confidence intervals if the trueNe

is small (�50), which is likely the case for houses 014_2002 and 092_2000
(Table 8.1). The reason is that the larger the true Ne and the smaller the
sample size, the less likely one is to find related individuals in the sample
(Table 2 in Waples and Waples68). Thus, if small sample sizes yield esti-
mates with unbounded confidence limits it is difficult to ascertain
whether the true Ne is large or whether it is small, but a larger sampling
error is to blame. If one wants to detect populations that have a true Ne of
500e1000, sample sizes need to be around 50 with about 20 polymorphic
loci.56 It appears my current data set was able to get bounded confidence
limits with n¼ 22e40 because true Ne of each subpopulation was likely
much less than 500. Several studies56e59 have used simulations to address
sampling, thus I refer readers to these papers for a discussion of appro-
priate samples sizes and number of loci to use in relation to types of
questions one might ask with Ne estimates.

Interestingly, almost all point estimates range in the mid tens to low
hundreds. Even the unbounded confidence interval estimates, which still
can give some indication of the lower bounds of Ne, tend to show low Ne

point estimates. From here on, however, I will restrict my analyses and
discussion to the 11 estimates that had n> 21 (Table 8.2). Even though
houses 014_2002 (n¼ 13) and 092_2000 (n¼ 11) had estimates with
bounded confidence intervals, I removed them from subsequent analyses
to avoid bias. Bias may originate because I would be omitting the other
houses with n� 21 that potentially really do have larger effective sizes,
but could not get an accurate estimate due to small sample size. There was
a high correlation between the point estimates of the two estimators
(r¼ 0.894, p¼ 0.0002, n¼ 11; Table 8.2). These data show good congruence
between the two estimators and give me high confidence I am getting
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accurate estimates of the parental breeding populationNe that contributed
to the infections in each household. This is especially true given the two
methods utilize very different methods (linkage disequilibrium versus
identification of pedigree structure) to estimate Ne. The harmonic means
of the household Ne point estimates (n¼ 11) were 76.9 (95% CI:
55.6e116.8) and 137.9 (95% CI: 108.2e183.6) for the LD-Ne and SA-Ne,
respectively (CI based on 1000 bootstraps over the point estimates of the
household-by-year samples). The harmonic mean is used because the
distribution of Ne can be highly skewed.56 Waples and Do56 also suggest
that if two single-sample estimators are independent and are estimating
the same parameter from a population, then a more precise or “best”
estimate of Ne can be obtained by taking the harmonic mean of the two
single-sample estimators. The “best” estimate-Ne’s for the 11 household-
by-year samples with n> 21 are given in Table 8.2. The harmonic mean
of these “best” estimates is 98.8 (bootstrap 95% CI: 73.5e139.1).

One of the questions that can be asked with these data is whether or not
drug treatment impacted Ne. Simulations have shown that LD-Ne esti-
mates from two time points can be used to detect a population genetic
bottleneck.58 After omitting samples with small n, I only had three houses
(97, 122, 135) with estimates from both time periods (people in households
were treated and worms collected, then three years later this was
repeated). This is a small sample size, but visual (i.e. not statistical)

TABLE 8.2 Ne Estimates from household-by-year with n> 21. The “Best” estimate-Ne

is the harmonic mean of the LD-Ne and SA-Ne methods

House ID_year House intensity LD-Ne SA-Ne “Best” estimate-Ne

097_2000 32 42.5 116 62.2

097_2003 43 66.7 133 88.8

119_2002 28 41.3 117 61

121_1999 89 90.1 180 120.1

122_1999 173 314.8 251 279.3

122_2002 48 271.8 265 268.3

123_1999 115 59.2 92 72

135_1999 132 240 208 222.9

135_2002 85 184.5 173 178.6

140_1998 31 40.7 67 50.6

148_2002 24 89.1 185 120.3

Harmonic mean 76.9 137.9 98.8
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assessment of the values and their confidence intervals (Table 8.1) does
not reveal any discernible impact of chemotherapy on the Ne of these
Ascaris subpopulations (even if houses with small n are examined). These
genetic results parallel prior epidemiological data from Jiri where after 1
year of treatment both prevalence (year 1¼ 27.2%, year 2¼ 24.2%) and
mean number of worms expelled per individual (2.37 and 2.67) showed
little change.62

The latter scenario also begs the question of whether Ne reflects Nc of
Ascaris in Jiri. Intuitively, asNc increases, so shouldNe. However, I caution
that the relationship between Ne and Nc under different demographic
scenarios is generally not well understood and may vary considerably
among species.69 In some free-living organisms, the ratio of Ne/Nc

decreases as population density increases.69 Experimental data in flour
beetles suggest this may be caused by an increase in the variation in
reproductive success among individuals as Nc increases.

70 Therefore, it
might be that there is an asymptotic relationship between Ne and Nc such
that Ne levels off even asNc gets larger (Figure 8.2). The latter relationship
would be important in epidemiological studies because a drop in Nc may
not constitute a drop in Ne until a critical Nc is reached. This would be
crucial in terms of the evolution of drug resistance because a huge
selection pressure via chemotherapy could be imposed on the population
without a drop in Ne. Selection is more efficient with largerNe. Thus, both
worm count and genetic data are warranted in epidemiological studies if

FIGURE 8.2 Hypothetical asymptotic relationship between Ne and Nc. Dotted line
denotes critical Nc where Ne no longer substantially increases as Nc increases. One possible
explanation for this pattern is that as population density increases, variation in reproductive
success may increase considerably, thus substantially reducing Ne. An important epide-
miological implication is that above this critical point, Nc could be reduced drastically
without a dramatic effect on Ne. In relation to the Ascaris data presented, the correlation
between household intensities and the single-sample Ne estimates may suggest Ascaris

subpopulations already exist below the critical Nc value.
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one of the goals is also to reduce genetic diversity/adaptive potential.
I did not have a means to estimate the Nc of the parents that produced the
sampled worms from each household especially since the parents are
likely from different breeding years (i.e. different Nt’s; Figure 8.1A). As
a surrogate, I tested for a correlation between the “best” estimate-Ne’s and
the infection intensities recorded for each house (Table 8.2), which
implicitly assumes large census populations beget large populations.
There was a significant correlation between infection intensity and “best”
estimate-Ne (r¼ 0.61, p¼ 0.047, n¼ 11). Thus, in these samples Ne may be
a good tracker of Nc. It would be encouraging if this result holds in future
studies because that means Ne estimates might be useful to monitor not
only adaptive potential, but also intensity data following an Ascaris
treatment program. More data are certainly needed, but it is interesting to
speculate that these correlations suggest that the Ascaris subpopulations
do not exist at high densities (e.g. mean intensity per person was ~2.5 in
Jiri62) where an asymptotic relationship between Ne and Nc would be
relevant (Figure 8.2). In comparison, an asymptotic relationship may be
more pertinent in parasites that have high infection intensities per host
(hundreds to thousands) such as several trichostrongylid nematodes of
livestock. Interestingly, among nematodes, the latter group is largely
where drug resistance has been reported.4,5

The overall metapopulation Ne (NeT) is also of interest in relation to
dynamics that occur among subpopulations (e.g. equal subpopulation
contributions to the migrant pool versus extinction/recolonization
dynamics). My goal in this section is to compare an estimate of NeT using
Wright’s island model71 to an estimate of NeT from the single-sample
estimators. I caution the combining of samples across subpopulations
(and across years as in this data set) and the subsequent use of these
single-sample estimators has not been quantitatively tested as a means to
estimate NeT. Thus, the following should be treated as a thought exercise
rather than definitive conclusions. I used the entire data set of 1094 worms
and obtained an LD-Ne estimate of 1062 (95% CI: 975e1161, at the 0.02
cutoff) and SA-Ne estimate of 1645 (95% CI: 1502e1789). The harmonic
mean of these two estimates yields a “best” estimate of NeT¼ 1291. In
Wright’s island model,71NeT is a function of subpopulationNe and genetic
differentiation (FST) such that

NeTz
nNe

1� FST
; (8.2)

where n is the number of subpopulations and each subpopulation has
the same Ne. This model assumes that subpopulations contribute equally
to the migrant pool. As can be seen in Eq. (8.2), as genetic differentiation
increases among subpopulations, NeT can exceed the sum of the sub-
population effective sizes.49,72 This is because while each subpopulation
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loses variation due to drift, each subpopulation will become fixed for
different alleles. Thus, genetic variation is maintained over the entire
metapopulation. However, in metapopulation models where some
subpopulations have greater contributions to themigrant pool than others
or where subpopulations go extinct and are recolonized via founders of
another subpopulation, NeT can be greatly reduced below the sum of
subpopulation effective sizes.49,61,72,73 If estimates of the three parameters
in Eq. (8.2) can be obtained to estimate NeT, then the island model value
can be compared to the single-sample NeT “best” estimate to draw on
conclusions about subpopulation contributions to the migrant pool.
Criscione and colleagues41 reported that genetic differentiation among
households was 0.023 (the equivalent of FST). Furthermore, using
a Bayesian clustering method,23 they identified 13 core clusters, which I
will use as n. Obviously Ne was not the same across households, but for
the purpose of illustration I will assume they were and use the harmonic
mean (Table 8.2), 98.8 (95% CI: 73.5e139.1). Based on the latter values, the
island model NeT is 1314 (possible range from 979 to 1851), which is in
agreement with the single-sample “best” estimate of 1291. Therefore, this
comparison suggests that Ascaris subpopulations in Jiri reflect more of
Wright island model rather than a metapopulation where subpopulations
have large unequal contributions to the migrant pool or recolonizatione
extinction dynamics. If the latter were true, then it seems like the single-
sample estimators would be producing an estimate well below that
predicted from the islandmodel. Readers are encouraged to delve into the
references above49,61,72,73 to get an understanding of all model assump-
tions. Here I point out two concerns in this data set. First of which is the
number of subpopulations I used in Eq. (8.2). If the landscape genetics
study41 did not sample all possible subpopulations, then 13, and thus the
estimate of NeT from the island model, would be an underestimate.
Second, I also assumed that the harmonic mean Ne of the households
reflects the central tendency of theNe of the 13 genetic clusters. This seems
reasonable as households were largely composed of individuals
belonging to a single cluster. However, all clusters are not represented by
the houses in Table 8.2, and a few houses may represent the same cluster
(i.e. there is pseudoreplication).

I did not have a means to estimate Nc for each subpopulation.
However, if I assume stable human population growth and infection
patterns are constant over time, I can estimate a census size for Ascaris
across the Jiri metapopulation (NcT). This enables me to get a NeT/NcT

ratio. Using the average prevalence of 25.7% and intensity of 2.52 worms
per infected host data from Williams-Blangero and colleagues,62 and the
1991 census count of the Jiri human population of 7138, the NcT of
A. lumbricoides would be 4623. Accordingly, NeT/NcT¼ 0.28 when using
the single-sample “best” estimator for NeT. The single-sample estimators
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used here would reflect uneven sex ratios and variation in reproductive
success of the previous breeding generation. In an extensive review by
Frankham,69 the mean Ne/Nc ratio was 0.35 (95% CI: 0.28e0.42) among
species for which variation in reproductive success and uneven sex ratios
were taken into account to obtain demographic estimates of Ne. Thus, the
Ascaris value falls just on the edge for what is known from single gener-
ation Ne/Nc estimates of other species.

The following may be a bit of an extrapolation because of the restrictive
assumptions of the island model,74 but I think it is a useful exercise in
what genetic data and a Ne/Nc ratio might be able to tell us. Under the
assumptions of Wright’s island model47,74 genetic differentiation is
a function of subpopulation Ne and migration rate (m) where

FSTz
1

4Nemþ 1
$ (8.3)

As discussed above, the island model might approximate the Ascaris
population dynamics in Jiri. Thus, it seemed reasonable to estimate the
effective number of migrants per generation (Nem) from Eq. (8.3). Using
a FSTof 0.023

41,Nem¼ 10.61. If theNeT/NcT ratio of 0.28 also represents the
ratio within subpopulations, then that means about 38 census worms/per
generation are migrants into the foci of transmission around households.
This does not mean all 38 census worms become adults or even infect
a person. It would be more appropriate to say a minimum of 10 migrant
census worms infect people (necessarily adult worm infections because
Nem represents individuals that contribute to the gene pool), but up to 38
census worms infecting a household were acquired from another trans-
mission focus per worm generation. A key point here is “per worm
generation.” Ascaris adult worms live about 1 year in their host.11 Thus,
one might conclude generation time is 1 year and, therefore, 10e38
migrant worms per year cause infections. However, as noted above, the
long-lived egg stages of Ascaris will increase generation time. Thus, these
10e38 migrant worms will be spread out likely over several years.

Above I have focused on using single-sample estimators to estimate
the Ne of the parents that generated the infections in the sampled
households. One can also estimate long-term or coalescentNe that reflects
the historical evolutionary dynamics of a population. Such an estimate
may provide a historical baseline for what the parasite’s Ne was like
prior to the implementation of a control program. Waples49 provides a
summary about estimating long-term Ne. Here, I illustrate estimation of
long-term Ne with the Jiri Ascaris data while also highlighting some of
the caveats discussed by Waples.49 Long-term Ne requires an estimate
of q¼ 4Neu, which means an estimate of u is also needed. Importantly,
an accurate estimate of Ne via an estimate of q will be dependent on
a reliable estimate of u; a 10� change in u leads a 10� change in the Ne
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estimate.49 Model-based genealogical simulations are preferable to esti-
mate q,75 though these are computationally intensive. For simplicity, I
estimated q with Eq. (8.1), which has the assumption that the population
under consideration is closed to immigration.49 In comparison to samples
from China and Guatemala, Ascaris from Jiri are highly genetically
differentiated.22 Thus, on a global scale the Jiri metapopulation of
A. lumbricoides is likely relatively isolated. Nonetheless, sampling of
locations around Jiri is needed to ascertain potential regional influences
on the long-term Ne estimate provided below. To estimate the coalescent
Ne of the metapopulation, I used He¼ 0.71, which was reported over all
1094 genotyped nematodes;41 thus, q¼ 2.45. There are no estimates of u
for microsatellites in Ascaris; therefore, I used estimates from the nema-
tode Caenorhabditis elegans.76 Repeat motif and length can affect u so I
calculated the average u from the six di- and five tetra-nucleotide motif
loci with lengths less than 70 repeats76 (mean u¼ 0.000542 and 0.0000362,
respectively) as this would reflect the microsatellite loci in my data set. I
had 19 di- and 4-tetra microsatellites, and used a weighted average to
obtain an estimate of u¼ 0.000454. Using this value of u, the coalescent
Ne¼ 1347. This long-term estimate is nearly identical to the single-
sample “best” estimate of NeT (1291).

CONCLUDING REMARKS

Above I discussed how population genetics data can be used to iden-
tify cross-transmission and focal transmission. In addition, I introduced
Ne as a means to help genetically monitor epidemiologically relevant
parasites. All the methods I have used come with assumptions and
require appropriate sampling. With regards to cross-transmission and
focal transmission, more discussion can be found in prior studies.7,22,41

Here, I will conclude with a discussion of usingNe estimators for parasites
especially in relation to Ascaris biology.

Single-sample, contemporary estimators assume closed populations
with discrete generations.49 In regards to the assumption of a closed
population, simulations showed that the LD-Ne estimator is little affected
by migration unless m> 0.1, in which case an estimate from a subpopu-
lation will approachNeT.

77 The latter does not appear to be an issue in this
Ascaris data set. Because Ascaris has a “seed bank” life history, it clearly
does not have discrete generations. When dealing with a species with
overlapping generations, generational Ne is of most significance for
monitoring adaptive potential or modeling the effects of selection. How
then can one estimate generational Ne for Ascaris? As conjectured and
assumed in this chapter, the use of single-sample estimators on a sample
with a mixed-age cohort (adult worms in the case of Ascaris) may actually
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provide an estimate of generational Ne (Figure 8.1A).56 If this holds true
(currently being tested by R. Waples, personal communication), one
should aim for larger sample sizes than the current data set (e.g. �50 per
subpopulation) in order to make sure that all potential cohorts making up
a generation are sampled. If this does not hold true, extensive data
collection will be needed to obtain an estimate of generational Ne (i.e.
using the formulaNez TÑt)

65 as one will need estimates of Tand theNt’s.
An estimate of T for Ascaris will likely require experiments in pigs by
either monitoring infections from a cohort of eggs over years or using
different aged pastures (i.e. eggs left standing 1 year, 2 years, etc.) to
estimate infection efficiencies of different egg ages. For now, it must
suffice to say that T is likely<6e9 years as this is the current knowledge of
egg longevity in the environment.12 Because parasite breeders within
a given breeding year (Nt) are separated among hosts,Nt is function of the
effective number of breeders within each host (Nb) of the subpopulation
and the proportional offspring contributions of each Nb (Figure 8.1B).13 I
refer readers to Criscione and Blouin13 for a detailed description of
a model for subdivided parasite breeders that can be used to estimate Nt

frommeasures of theNb’s. Here I draw attention to the fact that the single-
sample estimators can be used to estimate the Nb of a given host. One
simply would collect and genotype eggs/larvae from an individual
person. Moreover, the Nb values themselves may be of epidemiological
use especially if one does not have a means to directly count adult
parasites in a person (e.g. schistosome parasites).13 If Nb estimates
correlate to actual intensities of infection (a relationship that still warrants
testing), then Nb estimates could provide a more accurate depiction of
infection intensities among hosts compared to other surrogate methods
such as eggs per gram of feces. Nb estimates could also be important in
helping determine the role an individual host has in contributing to
a parasite’s subpopulation Ne (or Nt in the case of Ascaris).13

In this chapter, I have illustrated the feasibility of using of single-
sample estimators in estimating generational Ne estimates for subpopu-
lations (households) of A. lumbricoides. In order to illustrate different
concepts and applications that one could use with Ne estimates, I have
made several assumptions and extrapolations with these data. Nonethe-
less, these estimates have shed additional light on the population and
thus epidemiological dynamics of Ascaris in Jiri. Overall, the household
Ne estimates were low (~100) and it appears that they were stable over
time even with chemotherapy treatment (though a more formal test is
needed). Comparison of metapopulation Ne (NeT) between the island
model and the single-sample estimators further elucidated transmis-
sion patterns in that subpopulations appear to be contributing fairly
equally to overall dispersal of Ascaris across the metapopulation. Thus,
among-subpopulation dynamics were relatively stable such that this
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comparison did not support extinction/recolonization dynamics. Because
seed banks can slow the rate of genetic change,65 it may be that the long-
lived Ascaris eggs (a.k.a. parasite seed bank) are what contributed to the
stability in Ne over time, the lack of genetic differentiation between time
periods for a given household,41 and prevention of subpopulation
extinction.

Lastly, most of my discussion has focused on the short-term inference
of Ne, which will be comparable across studies and species, as a means to
monitor the impact of control programs on genetic diversity and pop-
ulation dynamics. Ne also provides long-term inference in relation to
adaptive potential. For instance, a threefold reduction in Ne from 104 to 10
is likely to reduce adaptive potential. However, it is appreciated that drift
will be mostly irrelevant in reducing adaptive potential if the threefold
reduction is from 107 to 104. Also, there is likely no magic Ne below which
all parasite species are likely to go extinct and additional demographic
factors that may vary among parasitic species will also be important.61

Clearly what is needed are more estimates ofNe from parasites before one
can begin to conclude about the adaptive potential. For instance, if the
small effective sizes in Jiri are reflective of Ascaris in other places, then it is
interesting to speculate that the reason why drug resistance has not been
reported for Ascaris is that the low effective sizes have be an impediment
to the evolution of drug resistance. Indeed, even theNeTand coalescentNe

were both low (~1300). In contrast, coalescent Ne on the order of 106e107

has been estimated for populations of trichostrongylid nematodes,78,79

a group with several species that have evolved drug resistance.4,5 The use
of the single-sample estimators56,57 will facilitate Ne comparisons among
parasite species/populations that differ in life history/demographic
attributes, thus allowing future studies to explore the relationship
between parasite Ne and adaptive potential.
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