Profile Photo of Beiyan Nan
Beiyan Nan

Assistant Professor

Fax: 979-845-2891

Nan Lab Website

3258 TAMU
Biological Sciences Building East
Room 306C

Biological Sciences Building East
Room 307

Joined the Department in 2015

  • B.S., 2002 College of Life Sciences, Inner Mongolia University, China, Microbiology
  • Ph.D., 2007 College of Life Sciences, Peking University, China, Biochemistry and Molecular Biology.
  • Postdoctoral research, University of California, Berkeley


Editor of Frontiers in Microbiology
Member of the American Society of Microbiology

I am interested in understanding the mechanisms of fundamental biological processes in bacteria. My lab uses soil bacterium Myxococcus xanthus as the model organism. Several aspects of M. xanthus make it an ideal model for understanding bacterial physiology. First, M. xanthus cells utilize sophisticated systems to move on solid surfaces, which involve cytoplasmic and periplasmic proteins, filamentous cytoskeletons, membrane channels, cell wall, and cell surface components. Second, cells constantly communicate with each other and with their environment. Cells usually move in coordinated groups but also as isolated “adventurous” individuals, which allows this bacterium to feed on soil detritus and prey on other microorganisms. Third, when the availability of nutrients or prey decrease in the environment, most cells exhibit behaviors that include aggregation into fruiting bodies and conversion of individual cells into spores.

I have been using the super resolution photo-activated localization microscopy (PALM) to track single molecule dynamics of proteins in live bacterial cells. With this technique, I have achieved 10 millisecond time resolution (100 frames per second) and 80 nm spatial resolution. These studies were initiated because the most widely used fluorescence microscopy techniques (including confocal, deconvolution, etc.) can only provide resolution to about 200 nm due to the diffraction of light, which is often insufficient for many studies because of the small size of bacterial cells (usually a few hundred nanometers in diameter).

Our research topics cover motility, development (fruiting body formation and biofilm formation), cytoskeleton, and cell wall assembly.

  1. Liu, Y, Nan, B, Niu, J, Kapler, GM, Gao, S. An Optimized and Versatile Counter-Flow Centrifugal Elutriation Workflow to Obtain Synchronized Eukaryotic Cells. Front Cell Dev Biol. 2021;9 :664418. doi: 10.3389/fcell.2021.664418. PubMed PMID:33959616 PubMed Central PMC8093812.
  2. Zhang, H, Venkatesan, S, Nan, B. Myxococcus xanthus as a Model Organism for Peptidoglycan Assembly and Bacterial Morphogenesis. Microorganisms. 2021;9 (5):. doi: 10.3390/microorganisms9050916. PubMed PMID:33923279 PubMed Central PMC8144978.
  3. Wong, GCL, Antani, JD, Lele, P, Chen, J, Nan, B, Kühn, MJ et al.. Roadmap on emerging concepts in the physical biology of bacterial biofilms: from surface sensing to community formation. Phys Biol. 2021; :. doi: 10.1088/1478-3975/abdc0e. PubMed PMID:33462162 .
  4. Zhang, H, Mulholland, GA, Seef, S, Zhu, S, Liu, J, Mignot, T et al.. Establishing rod shape from spherical, peptidoglycan-deficient bacterial spores. Proc Natl Acad Sci U S A. 2020;117 (25):14444-14452. doi: 10.1073/pnas.2001384117. PubMed PMID:32513721 PubMed Central PMC7321990.
  5. Iadarola, DM, Basu Ball, W, Trivedi, PP, Fu, G, Nan, B, Gohil, VM et al.. Vps39 is required for ethanolamine-stimulated elevation in mitochondrial phosphatidylethanolamine. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865 (6):158655. doi: 10.1016/j.bbalip.2020.158655. PubMed PMID:32058032 PubMed Central PMC7209980.
  6. Tchoufag, J, Ghosh, P, Pogue, CB, Nan, B, Mandadapu, KK. Mechanisms for bacterial gliding motility on soft substrates. Proc Natl Acad Sci U S A. 2019;116 (50):25087-25096. doi: 10.1073/pnas.1914678116. PubMed PMID:31767758 PubMed Central PMC6911197.
  7. Wright, TA, Jiang, L, Park, JJ, Anderson, WA, Chen, G, Hallberg, ZF et al.. Second messengers and divergent HD-GYP phosphodiesterases regulate 3',3'-cGAMP signaling. Mol Microbiol. 2020;113 (1):222-236. doi: 10.1111/mmi.14412. PubMed PMID:31665539 PubMed Central PMC7209772.
  8. Fang, Y, Lian, X, Huang, Y, Fu, G, Xiao, Z, Wang, Q et al.. Investigating Subcellular Compartment Targeting Effect of Porous Coordination Cages for Enhancing Cancer Nanotherapy. Small. 2018;14 (47):e1802709. doi: 10.1002/smll.201802709. PubMed PMID:30222252 PubMed Central PMC6563816.
  9. Fu, G, Bandaria, JN, Le Gall, AV, Fan, X, Yildiz, A, Mignot, T et al.. MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility. Proc Natl Acad Sci U S A. 2018;115 (10):2484-2489. doi: 10.1073/pnas.1716441115. PubMed PMID:29463706 PubMed Central PMC5877941.
  10. Pogue, CB, Zhou, T, Nan, B. PlpA, a PilZ-like protein, regulates directed motility of the bacterium Myxococcus xanthus. Mol Microbiol. 2018;107 (2):214-228. doi: 10.1111/mmi.13878. PubMed PMID:29127741 .
Search PubMed