Joseph Sorg

Professor
Associate Head of Faculty Affairs

Fax: 979-845-2891
Email:
jsorg@bio.tamu.edu

Curriculum Vitae
Sorg Lab Website

Office:
3258 TAMU
Biological Sciences Building East
Room 314C
979-845-6299

Lab:
Biological Sciences Building East
Room 316
979-845-6233

Joined the Department in 2010

  • B.S., 2001, Purdue University, Biochemistry.
  • Ph.D., 2006, The University of Chicago, Microbiology.
  • Postdoctoral research: Tufts University School of Medicine.

Research Description

My lab is focused on the mechanisms of spore germination and bile acid resistance in Clostridium difficile.  C. difficile is a Gram-positive, spore forming, anaerobe that causes infections in people who have undergone antibiotic regimens.  Previously, we had shown that certain bile acids promote C. difficile spore germination while others inhibit germination.  Bile acids are small molecules made by the liver that help the absorption of fat and cholesterol in the GI tract while also serving as a protective barrier against invading pathogens.  Because C. difficile spores use the ratios of bile acids as cues for germination, the actively growing bacteria must have adapted means to avoid their toxic properties.  We are currently focused on identifying these factors and the mechanisms by which C. difficile spores germinate.

  1. Simeon, RA, Zeng, Y, Chonira, V, Aguirre, AM, Lasagna, M, Baloh, M et al.. Protease-stable DARPins as promising oral therapeutics. Protein Eng Des Sel. 2021;34 :. doi: 10.1093/protein/gzab028. PubMed PMID:34882774 .
  2. Baloh, M, Sorg, JA. Clostridioides difficile spore germination: initiation to DPA release. Curr Opin Microbiol. 2021;65 :101-107. doi: 10.1016/j.mib.2021.11.001. PubMed PMID:34808546 .
  3. Aguirre, AM, Yalcinkaya, N, Wu, Q, Swennes, A, Tessier, ME, Roberts, P et al.. Bile acid-independent protection against Clostridioides difficile infection. PLoS Pathog. 2021;17 (10):e1010015. doi: 10.1371/journal.ppat.1010015. PubMed PMID:34665847 PubMed Central PMC8555850.
  4. Nerber, HN, Sorg, JA. The small acid-soluble proteins of Clostridioides difficile are important for UV resistance and serve as a check point for sporulation. PLoS Pathog. 2021;17 (9):e1009516. doi: 10.1371/journal.ppat.1009516. PubMed PMID:34496003 PubMed Central PMC8452069.
  5. Baloh, M, Sorg, JA. Clostridioides difficile SpoVAD and SpoVAE Interact and Are Required for Dipicolinic Acid Uptake into Spores. J Bacteriol. 2021;203 (21):e0039421. doi: 10.1128/JB.00394-21. PubMed PMID:34424035 PubMed Central PMC8508128.
  6. McAllister, KN, Martinez Aguirre, A, Sorg, JA. The Selenophosphate Synthetase Gene, selD, Is Important for Clostridioides difficile Physiology. J Bacteriol. 2021;203 (12):e0000821. doi: 10.1128/JB.00008-21. PubMed PMID:33820795 PubMed Central PMC8315937.
  7. Engevik, MA, Danhof, HA, Shrestha, R, Chang-Graham, AL, Hyser, JM, Haag, AM et al.. Reuterin disrupts Clostridioides difficile metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes. 2020;12 (1):1788898. doi: 10.1080/19490976.2020.1795388. PubMed PMID:32804011 PubMed Central PMC7524292.
  8. Bhattacharjee, D, Sorg, JA. Factors and Conditions That Impact Electroporation of Clostridioides difficile Strains. mSphere. 2020;5 (2):. doi: 10.1128/mSphere.00941-19. PubMed PMID:32132157 PubMed Central PMC7056809.
  9. Janvilisri, T, Sorg, JA, Scaria, J, Sadowsky, MJ. Editorial: Alternative Therapeutic Approaches For Multidrug Resistant Clostridium difficile. Front Microbiol. 2019;10 :1216. doi: 10.3389/fmicb.2019.01216. PubMed PMID:31214150 PubMed Central PMC6554321.
  10. McAllister, KN, Sorg, JA. CRISPR Genome Editing Systems in the Genus Clostridium: a Timely Advancement. J Bacteriol. 2019;201 (16):. doi: 10.1128/JB.00219-19. PubMed PMID:31085694 PubMed Central PMC6657597.
Search PubMed