Joseph Sorg

Associate Head of Faculty Affairs

Fax: 979-845-2891

Curriculum Vitae
Sorg Lab Website

3258 TAMU
Biological Sciences Building East
Room 314C

Biological Sciences Building East
Room 316

Joined the Department in 2010

  • B.S., 2001, Purdue University, Biochemistry.
  • Ph.D., 2006, The University of Chicago, Microbiology.
  • Postdoctoral research: Tufts University School of Medicine.

Research Description

My lab is focused on the mechanisms of spore germination and bile acid resistance in Clostridium difficile.  C. difficile is a Gram-positive, spore forming, anaerobe that causes infections in people who have undergone antibiotic regimens.  Previously, we had shown that certain bile acids promote C. difficile spore germination while others inhibit germination.  Bile acids are small molecules made by the liver that help the absorption of fat and cholesterol in the GI tract while also serving as a protective barrier against invading pathogens.  Because C. difficile spores use the ratios of bile acids as cues for germination, the actively growing bacteria must have adapted means to avoid their toxic properties.  We are currently focused on identifying these factors and the mechanisms by which C. difficile spores germinate.

  1. Nerber, HN, Sorg, JA. The small acid-soluble proteins of Clostridioides difficile are important for UV resistance and serve as a check point for sporulation. PLoS Pathog. 2021;17 (9):e1009516. doi: 10.1371/journal.ppat.1009516. PubMed PMID:34496003 .
  2. Baloh, M, Sorg, JA. Clostridioides difficile SpoVAD and SpoVAE interact and are required for DPA uptake into spores. J Bacteriol. 2021; :JB0039421. doi: 10.1128/JB.00394-21. PubMed PMID:34424035 .
  3. McAllister, KN, Martinez Aguirre, A, Sorg, JA. The Selenophosphate Synthetase Gene, selD, Is Important for Clostridioides difficile Physiology. J Bacteriol. 2021;203 (12):e0000821. doi: 10.1128/JB.00008-21. PubMed PMID:33820795 PubMed Central PMC8315937.
  4. Engevik, MA, Danhof, HA, Shrestha, R, Chang-Graham, AL, Hyser, JM, Haag, AM et al.. Reuterin disrupts Clostridioides difficile metabolism and pathogenicity through reactive oxygen species generation. Gut Microbes. 2020;12 (1):1788898. doi: 10.1080/19490976.2020.1795388. PubMed PMID:32804011 PubMed Central PMC7524292.
  5. Bhattacharjee, D, Sorg, JA. Factors and Conditions That Impact Electroporation of Clostridioides difficile Strains. mSphere. 2020;5 (2):. doi: 10.1128/mSphere.00941-19. PubMed PMID:32132157 PubMed Central PMC7056809.
  6. Janvilisri, T, Sorg, JA, Scaria, J, Sadowsky, MJ. Editorial: Alternative Therapeutic Approaches For Multidrug Resistant Clostridium difficile. Front Microbiol. 2019;10 :1216. doi: 10.3389/fmicb.2019.01216. PubMed PMID:31214150 PubMed Central PMC6554321.
  7. McAllister, KN, Sorg, JA. CRISPR Genome Editing Systems in the Genus Clostridium: a Timely Advancement. J Bacteriol. 2019;201 (16):. doi: 10.1128/JB.00219-19. PubMed PMID:31085694 PubMed Central PMC6657597.
  8. Shrestha, R, Cochran, AM, Sorg, JA. The requirement for co-germinants during Clostridium difficile spore germination is influenced by mutations in yabG and cspA. PLoS Pathog. 2019;15 (4):e1007681. doi: 10.1371/journal.ppat.1007681. PubMed PMID:30943268 PubMed Central PMC6464247.
  9. Shrestha, R, Sorg, JA. Terbium chloride influences Clostridium difficile spore germination. Anaerobe. 2019;58 :80-88. doi: 10.1016/j.anaerobe.2019.03.016. PubMed PMID:30926439 PubMed Central PMC6697597.
  10. Bouillaut, L, Dubois, T, Francis, MB, Daou, N, Monot, M, Sorg, JA et al.. Role of the global regulator Rex in control of NAD+ -regeneration in Clostridioides (Clostridium) difficile. Mol Microbiol. 2019;111 (6):1671-1688. doi: 10.1111/mmi.14245. PubMed PMID:30882947 PubMed Central PMC6561804.
Search PubMed